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ABSTRACT

Motivation: To study biology from the systems level, mathematical

models that describe the time-evolution of the system offer useful

insights. Quantitative information is required for constructing such

models, but such information is rarely provided.

Results: We propose a scheme—based on random searches over a

parameter space, according to criteria set by qualitative experimental

observations—for inferring quantitative parameters from qualitative

experimental results. We used five mutant constraints to construct

genetic network models for sensory organ precursor formation in

Drosophila development. Most of the models were capable of

generating expression patterns for the gene Enhancer of split that

were compatible with experimental observations for wild type and

two Notch mutants. We further examined factors differentiating

the neural fate among cells in a proneural cluster, and found two

opposite driving forces that bias the choice between middle cells

and the peripheral cells. Therefore, it is possible to build numerical

models from mutant screening and to study mechanisms behind the

complicated network.

Contact: cherri@sinica.edu.tw

Supplementary information: Supplementary data are available at

Bioinformatics online.

INTRODUCTION

Living organisms can be viewed as complex biochemical systems

that require enormous amounts of research regarding their essential

components and interactions. Mathematical models and computer

simulations are becoming increasingly useful tools in such studies

(see, e.g. Amonlirdviman et al., 2005; Barkai and Leibler, 1997;

Bhalla et al., 2002; Chen et al., 2004; Hoffmann et al., 2002; Jaeger
et al., 2004; von Dassow et al., 2000). In these studies, molecular

production, degradation and interactions are modeled with chemical

kinetics that are simulated using computers. This type of analysis

allows discoveries for new intrinsic biological property and assists

in experimental design.

Current computer technologies allow for large-scale dynamic

biological network simulations, but to set up network models

both qualitative and quantitative data are required. Qualitative

information can be gathered from most molecular biological

experiments, but quantitative data are much harder to come by.

A project for taking large-scale metabolite measurements has

been established (Ishii et al., 2004), but the approach ignores

differences among cells. When quantitative data are available,

numerical algorithms can be used to find optimal parameters that

minimize the distance between the model and the measured data

(Zwolak et al., 2005). In a relatively small model, parameters can be

estimated by trial-and-error. As an example, the dynamics and

mutant phenotypes in circadian cycle dynamics is studied using

this approach (Becker-Weimann et al., 2004). In constructing

network models for dynamic simulations, estimating appropriate

parameters is a challenge, making techniques for identifying para-

meter values an important issue.

Network simulation without predetermined

parameters

There are several approaches in network simulation that do not rely

on predetermined quantitative parameters. One example is analyz-

ing biochemical reaction fluxes in which known constraints are used

in optimizing an output function (e.g. organism growth rate). This

technique has been used for the genome-scale metabolism modeling

of yeast (Famili et al., 2003) with genetic controls included as

binary switches. For networks with complex genetic controls, find-

ing all the thresholds of genetic switches that interface numerical

fluxes and binary switches may not be easy. Another approach

optimizes scores to obtain kinetic parameters, where a large penalty

is added to the scores if the parameters cannot express mutant

phenotypes (Amonlirdviman et al., 2005). This scheme requires

a proper score function and a suitable optimization algorithm—both

of which can directly affect computational complexity and numer-

ical quality.

Computer-generated random searches are probably the easiest

approach to work without predetermined parameters. von

Dassow et al. (2000) used randomly generated parameter sets to

study segment polarity networks. Parameter sets were accepted as

‘suitable’ whenever a network generated cell array patterns con-

sidered compatible with those found in developing embryos. The

likelihood of finding suitable parameters reflects system robustness,

which Morohashi et al. (2002) believe serves as a measure of

plausibility. Eldar et al. (2002) used randomly generated parameters

to model bone morphogenic protein (BMP) gradient formation in

Drosophila, where system properties were studied with a small

number of parameter sets that were unusually robust in their

gradient-forming capabilities.

The random screening approach is attractive because it allows

us to take advantage of biological robustness and work with�To whom correspondence should be addressed.
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computer-generated parameters. However, there is always a chance

of the correct output resulting from incorrect dynamics, thus making

the establishment of search schemes that produce quality models

very important. In this paper we address issues associated with

screening strategies and subsequent analyses.

To uncover genetic control networks, scientists manipulate cer-

tain genes and observe the resulting phenotypes. The appearance of

mutant phenotypes not only indicates the presence of certain control

pathways, but also implies that pathway strength exceeds a certain

threshold in order for the effect to be observable. These clues can be

used to build models. In this paper, we propose and test an approach

in which the random generation scheme described above is used to

screen for parameter sets that satisfy mutant conditions. Our goal is

to demonstrate the possibility of obtaining such parameter sets and

using them to study the system properties.

Lateral inhibition: Drosophila’s external
sensory organ formation

Lateral inhibition is a process in which, through cell–cell inter-

actions, a cell prevents adjacent cells from moving in the same

developmental direction. In Drosophila, sensory organ precursor

(SOP) formation is one well-understood example of lateral inhibi-

tion via the Notch (N) protein signaling pathway. Mathematical

modeling of the lateral inhibition process offers an ideal platform

for determining how computational and theoretical studies can lead

to increased understanding of system behavior and dynamics

(Chang et al., 2003; Collier et al., 1996; Matsuno et al., 2003;
Meir et al., 2002; Wearing et al., 2000).
The body of an adult fruit fly is covered with evenly spaced

external sensory organs composed of four terminally differentiated

cells derived from a single SOP. SOP formation involves expression

of proneural proteins encoded by achaete (ac) and scute (sc) genes
(Artavanis-Tsakonas et al., 1999; Campuzano and Modolell, 1992;

Greenwald, 1998; Ghysen and Dambly-Claudiere, 1988). Initially,

all cells in a proneural cluster are capable of forming a neural

precursor, but only one cell actually forms an SOP. The N-Delta

(Dl) signaling pathway allows for competition among neighboring

cells. This has been shown by Hartenstein and Posakony (1990),

Oellers et al. (1994) and Singson et al. (1994), and computationally

demonstrated by Collier et al. (1996) and Meir et al. (2002).
Most pathways that affect SOP formation are able to amplify an

inital bias among the proneural cells if one exists. However, it is

unclear how a bias is formed at the beginning. Uniformly over-

expressing the gene encoding signal-sending ligand, Dl, lead to a

slightly affected phenotype (Seugnet et al., 1997; Doherty et al.,
1997) and this result seems to contradict the N signaling model.

Baker (2000) and Schweisguth (2004) have discussed several

possibilities that may regulate N signaling activity and overcome

the ectopic Dl expression by initiating the differentiation. While

new bias-initiating pathways may be discovered in the future, it is

important to understand the bias-initiating capability of the known

N signaling pathway.

In this work, we first numerically built N signaling models using

the mutant screening scheme. We demonstrated that mutant screen-

ing has made a significant improvement on the quality of the models

as shown by the high probability of generating correct expression

patterns of Enhancer of split [E(spl)] proteins in wild type and two N
mutant models, and through several other analyses included in the

supplements. With the numerical models, we showed that a bias can

arise from having different numbers and types of neighbors.

We found that lateral inhibition prefers cells in contact with

fewer signal-sending cells. On the other hand, cells in contact

with epidermal cells may have a lower chance of becoming

SOPs owing to an indirect mechanism involving the Dl’s autonom-

ous regulation of N and the irreversible N–Dl interaction on cell

surfaces. As a result, the chance of becoming an SOP is differen-

tially affected by a cell’s position. While our deductions from

numerical data are only hypotheses, we demonstrated that it is

possible to construct numerical models from qualitative phenotypes,

and such models offer a chance to study possible mechanisms hid-

den in the complicated interactions and pathways.

METHODS

We modeled the mRNA and protein concentrations of each gene by integ-

rating ordinary differential equations (ODEs) derived from a lateral inhibi-

tion genetic network. Searching ranges were chosen so that corresponding

rates, equilibrium constants or threshold concentrations were within typical

reported ranges. In each trial, random values were generated to form a

parameter set that was screened using wild type and mutant criteria. Para-

meter sets that met all stated criteria were selected for further analysis;

parameter sets that passed all but one mutant test were refined, with their

values varied in a small range until the set in question met all mutant criteria

(see Supplementary Tables S1 and S2 for details).

This parameter-inferring scheme was used to build a Drosophila SOP

development network (Fig. 1A). At cell–cell contact regions, the interaction

of N and Dl triggers a series of events, leading to the cleavage of N. The N

intracellular domain, NICD , is then released as it enters the nucleus. Together

with the Suppressor of Hairless [Su(H)] protein, NICD activates the tran-

scription of bHLH proteins encoded by the E(spl) gene complex. E(spl)

proteins are repressors for the proneural genes ac and sc. The proneural

Su(H)

ac or sc Ac or Sc

C

H

E(spl) E(spl)
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Su(H)/N
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Cell membranes
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B

Fig. 1. (A) Network model and (B) cell arrangement. In A, ovals represent

mRNA, rectangles proteins and octagons protein complexes. ‘C’ denotes a

constant supply of mRNA for ubiquitously expressed genes according to

given parameters (independently varied for each gene). Arrows represent

transcription activations (in this case, from a protein or protein complex to

mRNA), translations (frommRNA to a protein), or complex formation (from

several proteins to a single complex). Lines with circular dots denote repres-

sion. In most cases a specific reaction is repressed, therefore dots were placed

on corresponding arrows. The inhibitory effect of Su(H)/H on E(spl) tran-

scription was modeled as a competitor with Su(H)/N. The seven cells in the

middle of B represent a proneural cluster. The presumptive SOP cell is

marked 1; the cell marked as 2 is one of the six adjacent cells. In a model

with 6-fold symmetry, solving ODEs for 19 cells is the equivalent of solving

ODEs for the cells marked 1–4.
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genetic products Acheate-Daughterless (Ac/Da) and Scute-Daughterless

(Sc/Da) complexes turn on the transcription of Dl, forming a mutual inhib-

itory loop. Ac/Da and Sc/Da are able to turn on the transcriptions of pro-

neural genes ac and sc as well as their inhibitor E(spl), forming positive and

negative feedback loops, respectively. The recently discovered ‘default

repression’ effect of Hairless (H) on E(spl) transcriptions were included

(Barolo et al., 2002) as a competition between NICD and H in binding

with Su(H) and as a second competition to regulate the E(spl) gene tran-

scription. Autonomous Dl regulation takes place during post-translational

modifications of N (Schweisguth, 2004). In our model, the newly translated

Dl inhibits N translation.

We note that our model is still far from complete, since there exist several

other factors influencing the N signaling pathway. The influences of these

factors, and the difficulties of including them in the current model, are

discussed in the accompanying Supplement for interested readers.

NICD overexpression leads to a loss of SOP phenotype—the result of N

signaling (Rebay et al., 1993; Struhl et al., 1993). Temperature-sensitive N

mutants (Nts) in non-permissive temperatures lead to a supernumerary SOP

phenotype (Hartenstein and Posakony, 1990). The H mutant also leads to a

loss of SOP phenotype (Bang et al., 1991). A simultaneous overexpression of

genes Su(H) and H results in the production of supernumerary SOP cells

(Morel et al., 2001), while an overexpression of the gene Su(H) only leads to

a loss of SOP phenotype (Schweisguth and Posakony, 1994). Utilizing

constraints derived from these mutants, it should be possible to obtain a

balanced description of N, H and Su(H) activities.

Except when stated otherwise, each cell in our model had six adjacent

cells and they were simulated in a group of 19 (Fig. 1B). In a 6-fold

symmetrical configuration, only four cells need to be explicitly calculated.

To account for the effect of a ‘positional cue’ from an unknown source

(Koelzer and Klein, 2003), we used a mild prepattern for the initial amount of

proneural gene products (mRNAs ac and sc, and proteins Ac, Sc). The

presumptive SOP cell in the center received twice as much proneural

gene product as the six adjacent cells. All other cells received zero proneural

genetic products, mimicking epidermal cells outside the cluster. Other

details for model setting, parameter ranges and the ODEs used are presented

in our Supplementary Material. Simulations were performed with a program

written in Matlab run on either an Intel Pentium IV-based PC (Linux oper-

ating system) or Power Mac G5 (OS 10.3).

RESULTS

Screening for mutants

Screening statistics for the parameter sets from the observed mutant

conditions are presented in Table 1. Despite the low probability, we

obtained two sets that met all five mutant criteria and 39 sets that

met four out of five. After refining the latter parameter sets by

varying their values within a narrow range, 29 of the 39 sets

met all five criteria. We consequently obtained 31 parameter sets

that satisfied all five mutant criteria.

E(spl) expression patterns

To determine whether the identified parameter sets actually medi-

ated N signaling in SOP selection, we examined the expression

patterns of the N signal’s direct target, the E(spl) gene, whose

protein product represses the expression of the ac and sc proneural
genes. According to Jennings et al. (1995), E(spl) proteins can be

detected in cells surrounding SOP cells, but not in SOPs. Further-

more, E(spl) expression is greatly reduced in Notch mutants, while

the ubiquitous expression of NICD leads to ectopic expression of

E(spl)bHLH proteins. These results served as good tests for our

models.

Among the 31 parameter sets obtained through mutant screening,

22 behaved similar to the wild-type E(spl) gene expression—i.e. the

amount of E(spl) protein in adjacent cells was at least double than

that in the center cells. Furthermore, results from NICD over-

expression tests revealed that, in all of the 22 sets, the amount of

E(spl) protein in every cell in the proneural cluster was uniformly

higher than in any cell from the wild-type model. In N loss-

of-function mutants, 20 of the 22 sets were capable of generating

E(spl) expressions that did not exceed those in any cell in a wild-

type cluster. These results, which are in agreement with observa-

tions reported by Jennings et al. (1995), indicate that our mutant

screening scheme is capable of identifying parameter sets that

choose SOP cells by means of N signaling. In contrast, most of

the parameter sets that only passed wild-type screening did not yield

correct E(spl) expression patterns (Table 2).

Meir et al. (2002) used a second test with the same initial Ac and

Sc protein concentrations across cells, without changing other initial

concentrations. The test’s purpose was to avoid SOP generation via

a simple threshold-cutting mechanism. In our model setting, the

probability of passing this second test was about 30% for parameter

Table 1. Screening for parameter sets with mutant conditions

Genes Mutation Phenotypes Number of

parameter Sets

(I) Screening

Number of parameter sets tested 2 852 053

Wild type Single SOP 15 259

Notch Loss of functiona All SOPb 223c

NICD Overexpression No SOPd 4 398

H Loss of function No SOPe 2 194

Su(H) Overexpression No SOPf 60

Su(H) and H Overexpression All SOPg 443

All mutants and wild type 2

(II) Refinement

Number of parameter sets passing any four mutant

tests

39

Number of parameter sets tested 120 866

All mutants and wild type 29

aMutation tests performed for parameter sets that passed wild type single SOP test.
bHartenstein and Posakony (1990).
cAmong those that passed wild-type screening.
dRebay et al. (1993); Struhl et al. (1993).
eBang et al. (1991).
fSchweisguth and Posakony (1994).
gMorel et al. (2001).

Table 2. Number of parameter sets that produce expected E(spl) expressions

in wild type and two different mutants

Tests performed

Wild type NICD Over N Loss

Passed all mutant test 22/31a 22/22 20/22

Passed wild type test only 53/520 35/53 8/53

Passed a second test b 9/149 6/9 1/9

aNumber of sets/total sets tested.
bAs defined by Meit et al. (2002).

Constructing models from mutant phenotypes
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sets capable of generating the wild-type SOP phenotype—a much

higher probability than for our mutant screening. However, for those

parameter sets that passed this second test, we observed a very low

probability of producing correct E(spl) expression patterns

(Table 2).

Based on this requirement to generate a correct E(spl) pattern in

wild type and two mutant settings, we ended up with 20 parameter

sets which we studied further.

Factors influencing neural fates

Several pathways in the network are known to promote single SOP

formation. The lateral inhibition pathway is the major component

mediating intercellular signaling. The auto-activation of Ac/Da

(which acts like a toggle switch) may play an auxiliary role

(Becskei et al., 2001; Bhalla et al., 2002; Gardner et al., 2000).
The regulatory effect of Dl on N production may provide extra

stabilization for normal SOP formation. While it is difficult to

elucidate the exact role of each process within the network by

traditional means of genetic manipulation, in silico simulation

can provide useful information.

Lateral inhibition prefers peripheral cells In a proneural cluster,

the cells in the middle are in contact with more signal-sending cells

than those on the periphery, implying that the middle cells may have

less chance to become an SOP. By changing the number of con-

tacting neighbors for the center cell, we tested for such a preference.

In Figures 2A and B we depict new arrangements for a proneural

cluster, where the center cell is in contact with four or five

neighbors. Time-course data for one representative parameter set

are included in Figure 2.

In Figure 2, it is shown that reducing the number of contacting

neighbors was accompanied by an increase in the proneural activity

in the center cell (Ac/Da, Fig. 2C), and a decrease of inhibitory

signals [NICD and E(spl), Fig. 2E and G]. For peripheral cells, the

opposite changes were seen (Fig. 2D, F and H). The fewer signal-

sending cells a cell is in contact with, the less NICD it receives, and

the stronger Dl signal it is able to send. Therefore, with lateral

inhibition, cells that contact with fewer signal-sending cells seem

to be in a better position to become an SOP. Results for all

20 parameter sets are included in Figure S2 in the Supplementary

material. All are qualitatively very similar to those in Figure 2.

To further explore if it is easier to build lateral inhibition models

that select a peripheral cell rather than a center cell, we tested with a

simplified model that contains only a ‘pure’ lateral inhibition path-

way by removing all the branches and auxiliary pathways from the

model (shown in Figure 3). We repeated the parameter selection

scheme with this model to select an SOP in the middle (‘LI’) or on

the periphery (‘LI-inv’). Since we have omitted the competitive

repression that arises from H and Su(H), only two mutants are

left for the screening tasks: N loss-of-function and NICD over-

expression. In Table 3 we list the results.

Without auxiliary pathways, the chance of finding SOP forming

parameter sets was very low (LI). In contrast, the chance increased

by > 500-fold when we looked for the inverse final pattern—i.e. the

peripheral cells became SOPs while the center cell was inhibited

(LI-inv). Our data show that it is much easier to form a lateral

inhibition module that selects a peripheral cell than one that selects

a center cell.

This result is contrary to the fact that most SOPs arise from the

central region of the clusters. Sometimes an SOP may arise from an

eccentric position in a proneural cluster, but not at the edge of a

cluster (Cubas et al., 1991). In the early development of a proneural

cluster, the presumptive SOP does not seem to be very different

from other cells in its shape, size or number of contacting neighbors

(Cubas et al., 1991; Skeath and Carroll, 1991). Thus the preference

towards cells in the periphery region from the mutually repressive

lateral inhibition pathway may actually exist. This contradiction

highlights the importance of other mechanisms that promote

cells in the central region or suppress peripheral cells. In the

Fig. 2. (A) and (B) New arrangements for two proneural clusters tested. Cells

marked 1, 2, 3 and 4 are equivalent to those similarly marked in Figure 1B,

except that the hexagonal cell 1 is now a pentagon (A) or a square (B). (C–H)

Time-dependent concentrations (in nM) of Ac/Da (C,D), NICD (E,F) and

E(spl) (G,H) in the center cell (C,E and G) and the adjacent cells (D,F

and H). Solid lines are from the original hexagonal model, while the dashed

lines are from the cluster in A, and dotted lines are from the cluster in B.

Su(H)

ac or sc Ac or Sc

C

E(spl) E(spl)

NICD

da

Dl

Da

Dl

N N

C

Dl

N

NICD

Ac/Da
or 

Sc/Da
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Su(H)/N

su(H)
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Cell membranes

C

Fig. 3. A simplified model containing only the N – E(spl) mediated lateral

inhibition pathway. The gray dashed inhibition from Dl to N was removed in

the LI and LI-inv tests, but included in LI+ test.
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following, we discuss a mechanism for suppressing peripheral cells

through existing pathways.

An auxiliary mechanism that suppresses peripheral cells One

of the 20 parameter sets selected had an unusual capability of sup-

pressing the neural fate of peripheral cells. When started with

a reversed initial pattern (i.e. initial concentrations of ac (sc) and
Ac (Sc) 10 times higher in the peripheral cells than in the center cell)

the network still propagates to generate an SOP in the center. While

the dynamics from this extreme case may not be realistic, a full

analysis uncovers a possible mechanism that affects the neural fates.

In Figure 4 we included the corresponding time course data.

Despite an initial 10-fold difference in the proneural gene pro-

ducts, the difference in ac mRNA and Ac/Da complex among the

cells was quickly reduced (Fig. 4A and B). The higher concentration

of proneural gene products in the peripheral cells (A and B, time

regions marked in yellow shade), did not lead to a higher Dl protein

concentration (C). Instead, the proteins NICD (D) and E(spl) (E)

seemed to follow the proneural preferences set up by Dl, and they

were followed by ac and Ac/Da. The Dl translation of the two cells

were similar (H), but the depletion due to N–Dl interaction showed a

remarkable difference (I). At about 40–140 min the depletion in cell

2 was larger (more negative) than that in cell 1. (The red peak at

�170 min is from the center cell sending massive signals to the

adjacent cells—a green peak is also seen in NICD [D] at this time.)

We further decomposed the depletion (J) and found that the deple-

tion of Dl protein in cell 2 interacting with N protein on cells 3 (pink

lines in J and K) and 4 (data not shown) is responsible for the higher

depletion rate of Dl in the adjacent cell, suppressing its proneural

activity. The ubiquitously expressed N is not regulated in the blank

epidermal cells 3 and 4, since they do not express any proneural

genes or the Dl gene. However, in cells 1 and 2, N is regulated (F).

Therefore, the abundant N protein on the surface of cells 3 and 4

offered a chance to decrease the amount of Dl protein in the

adjacent cells (2), since N–Dl interaction leads to cleavage of N

and subsequent endocytosis. The mechanism is summarized in

panel L of Figure 4.

In a separate test, we added the autonomous regulation of N to the

simplified lateral inhibition model (‘LI+’ in Figure 3 with the gray

inhibition indicated). Random screening results are included in

Table 3 under the column ‘LI+’. The chance of finding normal

SOP formation parameter sets with this model increased by a factor

of 10, despite having two more parameters in the model. We further

tested the screened parameter sets with a number of different initial

concentrations. Among the 140 sets for the LI+ model, 45 could

survive with a higher level of proneural gene products in the peri-

phery cells, generating an SOP in the center at the end of the

simulation. On the contrary, none of the 21 models obtained

from the original LI model could survive when the adjacent cells

received a larger amount of proneural gene products. (Full details

and data are in the supplemental materials).

The Dl autonomous regulation of N can directly decrease the

incoming NICD signaling by regulating the amount of N on the

cell membrane. Our results further indicated that this pathway is

potentially able to bias the selection of an SOP via an indirect

mechanism outlined in Figure 4L, such that cells in the periphery

of a proneural cluster are less likely to become an SOP.

Effects of initial amounts of proneural genes

In lateral inhibition, a small initial difference leads to different cell

fates. We tested to see whether the models possess this type of

competitive nature, and whether the small initial bias used in the

model setting is necessary.

We varied the initial concentrations of proneural genes on models

derived from the mutant screening. In each test, the initial concen-

tration of mRNAs ac (sc) and proteins Ac (Sc) were varied inde-

pendently using two scaling factors, one for the center cell and

another for the adjacent cells. Two sets of results are shown in

Figure 5. The diagonal line in each plot indicates cases in which

the cells started with equal amount of proneural genes. The position

of each dot in Figure 5 indicates the initial concentrations in the

simulation, and the color specifies the phenotypes at the end of

simulation.

In Figure 5A and B, results from two of the 20 mutant screened

parameter sets are presented. The full results are included in

Figure S4 A (Supplementary Material). A major characteristic of

the results in Figure 5A and B, which is also seen in many datasets in

Figure S4 A, is that the normal SOP foming region (filled by red

dots) includes a boundary with a positive slope at its upper left side.

Therefore, along this boundary, when the initial concentrations of

the proneural genes are increased (or decreased) in all of the cells,

the single SOP phenotype will still appear. This is a result of a

competition mechanism, and it is in nice agreement with experi-

mental observations (Chien et al., 1996), where overexpression of

sc led to ectopic es organs that were solitary and evenly distributed.
The details and shapes of the single SOP forming region vary for

different parameter sets. In Figure 5B, the SOP region extends to the

upper triangle, indicating that the model is able to suppress the

neural fate of the adjacent cells even if the adjacent cells initially

received higher amounts of proneural gene products. This result

indicates that it is possible for the network to start from a uniform

proneural gene distribution and evolve to a single SOP in a cluster.

This parameter set has helped us to identify the auxiliary mechanism

that suppresses neural fate in the peripheral cells discussed above.

Table 3. Random screening of a reduced model that contains only a

lateral inhibition pathway (LI), with the same model but reversed SOP

selection (LI-inv), andwith a lateral inhibition plus an automonous regulation

pathway (LI+)

Models LIa LI-invb LI+c

Number of parameter

sets tested

3 585 062 2 036 429 2 467 460

Wild Type/NICD

Over/N Loss

21/21/21 2636/2635/2607 141/140/141

Passing all 21 2606 140

Number of parameters 36 36 38

Hit rates 5.86 · 10�6 1.28 · 10�3 5.67 · 10�5

Inverse initial patternd 0/21 — 45/140

aModel depicted in Figure 3, without the D1 to N autonomous regulation.
bWith the sameLImodel but reversedwild type criteria: the parameter set was selected if

it could generate SOPs at the peripheral site (#2 cell) and repress the sensory fate in the

center cell. The initial conditions and the screening criteria remained unchanged.
cModel depicted in Figure 3, with the D1 to N autonomous regulation.
dStarting from an inverse distribution of proneural gene products, the number of para-

meter sets that are able to generate the normal phenotype is listed. The denominator is the

total number of sets tested.
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The proneural clusters are typically larger than 7 cells, as in the

19-cell model we simulated. Cells that are not in direct contact with

the presumptive SOP were shown to be suppressed by the long

range inhibition in which Dl is transported via filopodia

(Joussineau et al., 2003; Renaud and Simpson, 2001). However,

the indirect mechanism discussed above depends on the level of N

on the cell surface, and therefore it is necessary to study a large

cluster where the effect of proneural activity of cells that are not in

direct contact with the center cell can be studied. In Figure 5 we

included results of simulations extending to a 37-cell model, in

which 19 cells in the middle form a proneural cluster and the 18

peripheral cells are blank cells forming an epidermal boundary.

Extending to a larger cluster does not affect the major characteristic

of the SOP-forming region in set I, but set II is sensitive to such a

change. Results from most other sets (Fig.S4 E in the supplemental

material) are largely the same as the original 19-cell model.

In set II, the tendency of becoming an SOP of the center cell is

decreased when an extra layer of proneural cells are added. In the

‘no SOP’ region (pink dots, which were judged by proneural pro-

ducts in cells 1 and 2), none of cells 3 and 4 could become an SOP.

Even though parameter set II is not likely to be representative of a

realistic situation, from this result we see that the auxiliary mech-

anism suppresses peripheral cells which contact the epidermal cells.

In experimental observations, some eccentric SOPs arose from cells

that were about a cell’s distance from the boundary of the proneural

clusters (Fig. 2 in Cubas et al., 1991), and such observations are

consistent with our conclusion.

With the asymmetries in the numbers and types of neighbors, on

which the cell–cell interaction strengths depend, it is possible to

differentiate cells that are initially the same. In Table 4 we list

statistics of searching for SOP-forming parameter sets starting

with an equal amount of proneural genes. It is seen that, without

an initial bias, it is quite unlikely to generate SOP-forming models

from a pure lateral inhibition model (LI). With the auxiliary path-

way added in the LI+ model, there exists a good chance to form

models in which SOPs arise from the middle of a seven-cell cluster.

Our results show that the pre-patterning used in simulation is not

necessary, as long as there exist auxiliary pathways that help sup-

press the neural fate of the peripheral cells.

A number of other numerical tests were performed to see the

differences mutant screening made. The normal phenotype forming

ranges of each parameter, robustness towards random parameter

variation, and the complete results of varying initial amount of

proneural gene products are included in the Supplementary Sections

S2.1–S2.3.

DISCUSSION

Building models with mutant screenings

When constructing genetic networks, it is possible to impose a

simple pattern formation condition and to obtain parameter sets

using random search techniques. Requiring models to comply

with the observed phenotypes of mutants significantly improves

the chances of having them perform properly. For a 55-parameter

network it is feasible to let a computer generate parameters accord-

ing to constraints and ranges set by experimental results (Table 1).

Accordingly, we observed that E(spl) expression patterns (a con-

dition that was not included in the screening criteria) were mostly

Dl Dl

N N

C

N

NICDNICD

Dl Dl

N NC Dl

N

NICD

Dl

N C

Ac/Da
or 

Sc/Da

Ac/Da
or 

Sc/Da

N

C

• Center cell:
– N is regulated.

– Initially, N on 
neighbors’ surface 
are regulated.

– Dl is less depleted by 
N-Dl interaction.

• Boundary cells:
– are epidermal cells.  

– N is not regulated.  
There is abundant N 
on cell surface.

• Adjacent cells:
– N is regulated.

– Some neighbors have 
large amounts of N.

– Dl depleted by N-Dl 
interaction.

1 2 3 L

Fig. 4. Time-evolution in concentrations (A–F, in nM) or rates (G–J, in

nM/min) calculated from the parameter set that can suppress the neural fate

of the adjacent cells. Shown are the time-course data starting from a reversed

pattern, in which the amount of proneural gene products given to the center

cell was the same as in a standard test, but the adjacent cells received 10 times

as much as the center cell. In panels A–I, red solid lines represent the con-

centrations or production rates of the center cell, while green dashed lines are

those of the adjacent cell. In F, concentration of N protein in the boundary cell

#3 is included as a blue dotted line. The concentrations of ac (A), Ac/Da (B),

Dl (C), NICD (D), E(spl) (E) and N (F) are shown. The yellow shaded regions

in A–E indicate higher proneural activity in the adjacent cell (higher in ac,

Ac/Da Dl and lower in NICD , E(spl)). Production rates for Dl are in G, which

were further decomposed into translation (H) and depletion (I, J). The Dl

depletion rates due to N-Dl complex formation are shown in I (for whole cells)

and J (for eachcell-cell contact). In J, the corresponding cell-cell contact regions

are marked in the same color in the cluster arrangement in K. The solid red line

in J, e.g. represents the depletion ofDl for cell 1 due to interactionwithNon cell

2. L is a summary of the underlying mechanism. The dashed inhibitory curve

from NICD to Ac/Da represents multiple steps of interaction in the model.
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compatible with experimental results for the wild type and two

mutants.

Mutant phenotypes carry pieces of quantitative information

implicitly—in other words, the fluxes in pathways associated

with perturbed genes must be above some unknown threshold for

phenotypes to be observable. By requiring our network model to

perform in a manner similar to observed mutant phenotypes, such

implicit information is utilized in a simple and direct way. Since the

literature contains a large amount of qualitative data, our scheme

allows for the construction of numerical models to aid research in

systems biology.

Since the mutants in our model share the same set of perturbed

pathways and dynamics, the mutant screening events are not

independent. Thus, the mutant screening task is not as time-

consuming as one might expect. The probability of a parameter

set that has passed the wild-type test meeting all mutant criteria

is 2/15259 ’ 0.00013, which is three orders of magnitude larger

than the probability of passing five independent mutant tests

(4398· 223· 2194 · 60 · 443/152595’ 6.91 · 10�8). The covari-

ance matrix elements for the five mutant screening tests were all

positive (data now shown), meaning that the odds of passing one test

increases when another test is passed.

When it is necessary to add new elements, interactions or mutant

constraints to a network, it is desirable to reduce the time and effort

required for the model-building process. Our refinement strategy

may be useful in this regard, since it includes a local screening of the

region that surrounds the original parameter values. As shown in

Table 1, whenever a parameter set met four out of five mutant

criteria, a local search had a much higher probability of finding

suitable parameters. We used Gaussian random searches (which are

not strictly bound) for this task. Parameters that were considered

more relevant to genes altered in the mutants were searched using

larger ranges. This local search scheme allows for easy model

extension and modification.

The random screening scheme allows for an even probe of para-

meter space according to experimental observations. Despite the

presence of uniform mutant phenotypes and E(spl) expression pat-

terns, the 20 parameter sets we identified still differed in their

detailed behaviors, reflecting the complexity involved in biological

model construction (e.g. Figs S2–S4). The diversity of the models

allows us to examine a large number of possibilities. We traced the

source of differences among cells and identified two possible driv-

ing forces that bias neural fates. In searching for possible outcomes

from a complicated interaction network, we showed that the random

screening scheme in conjunction with mutant constraints is very

useful.

Neural fate determination

The N signaling pathway is seen in many tissues in Drosophila and
other organisms. In different contexts, strength or timing require-

ments may not be the same. Signaling networks need to survive

these different cellular conditions and they may need to turn on

different downstream targets. Utilizing functionally similar path-

ways is a commonly seen strategy to ensure a proper outcome.

In selecting an SOP, all of the pathways studied are potentially

able to amplify and stabilize a difference in the proneural activity,

but little is known about their ability to create a difference. With our

numerical analyses, it is shown that differences can be created

within the N signaling network. With different numbers of signal-

sending and non-signal-sending neighbors, cell’s fates may be

biased.

The role of the indirect mechanism cannot be confirmed until

experimental evidence is presented. Since this pathway is heavily

coupled with essential players in N signaling, experimental veri-

fication may be rather indirect. One possibility is to use Notch
mosaic clones, where regions lacking N are created. Careful stat-

istics on the number of SOPs arising at different distances from the

edge of mutant clones, when compared with similar statistics over

normal tissue, can possibly provide supporting data.

CONCLUSION

In this paper we proposed and tested a random search scheme to

obtain parameters from qualitative experimental results. We used

the scheme to construct mathematical models for a developmental

module of Drosophila—the lateral inhibition network involved in

SOP selection. We showed that most parameter sets identified in this

manner can generate correct E(spl) expression patterns for wild type
and two N mutants. Further analyses revealed two opposite driving

forces that bias the choice between middle cells and the peripheral

cells in a proneural cluster. Our data show that lateral inhibition

Fig. 5. Phenotypes for varying initial concentrations of proneural genes in the

center and adjacent cells. [red: single SOP (wild type); green: all SOP; pink:

no SOP; yellow: inverse; blue: others.] Shown are the results of two parameter

sets that passed all mutant tests. The initial concentrations used in mutant

screening are at (1,0.5) in the scale used. A and B are results from a 19-cell

model,C andD are from a 37-cellmodel, as indicated on the right. In C andD,

red crosses are used to indicate cases where the central seven cells satisfy the

single SOP condition, but with additional SOPs formed among cells 3 or 4.

Table 4. Random screening of LI and LI+ models, starting with equal

amount of proneural gene products in all seven cells in the proneural cluster

Models LIa LI+b

Number of parameter sets tested 3 229 482 2 241 396

Wild Type/NICD Over/ N loss 0/0/0 23/23/23

Passing all 0 23

aModel depicted in Figure 3, without the D1 to N autonomous regulation.
bModel depicted in Figure 3, with the D1 to N autonomous regulation.
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favors cells that have contact with fewer inhibitory signal-sending

neighbors. Through numerical analysis, we found an indirect mech-

anism that arises from the autonomous regulation of N and the

irreversible N-Dl interaction, which decreases the amount of Dl

in the peripheral cells and thus suppresses neural fates in these

cells. This new mechanism may contribute to a preferential selec-

tion of center cells in proneural clusters. With these findings, we

have demonstrated the potential of the computational approach in

identifying working hypotheses and providing an analytical tool for

complicated interactions.
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